材料与能源学院鲁圣国教授团队(“智能传感器和能量转化器件”)的“青年百人”副教授陶涛博士的论文《Anode Improvement in Rechargeable Lithium–Sulfur Batteries》,近日被《Advanced Materials(IF 2016=19.791)》杂志接受发表。该论文是我校首次以第一单位在该杂志上发表的综述性论文。
近年来,锂离子电池领域的巨大发展前景吸引了世界各国的广泛关注,并取得了巨大的商业成功,但其有限的能量密度难以满足新能源技术飞速发展的需要。相对于传统的锂离子二次电池,锂硫电池拥有高能量密度(2600 Wh/kg)、低成本、环境友好等优点,因而在未来的动力电池和储能电池等应用上被寄予厚望。近十年来人们在维持电极结构稳定性、提高硫的利用率、延长电池循环寿命等方面开展了大量的研究工作。但锂硫电池仍存在循环性能差、绝缘性多硫化物的穿梭效应、电池循环过程中金属锂负极腐蚀和锂枝晶等问题,这些问题都严重地影响了锂硫电池的电化学性能。
陶涛博士与澳大利亚迪肯大学陈英教授等一起合作,针对上述问题对锂硫电池负极保护技术进行了详细的综述,分析了未来锂硫电池负极的研究和发展前景。锂硫电池的工作原理如图1所示。
以下附图1和英文摘要:
图1
Abstract: Owing to their theoretical energy density of 2600 Wh kg-1, lithium–sulfur batteries represent a promising future energy storage device to power electric vehicles. However, the practical applications of lithium–sulfur batteries suffer from poor cycle life and low Coulombic efficiency, which is attributed, in part, to the polysulfide shuttle and Li dendrite formation. Suppressing Li dendrite growth, blocking the unfavorable reaction between soluble polysulfides and Li, and improving the safety of Li–S batteries have become very important for the development of high-performance lithium sulfur batteries. A comprehensive review of various strategies is presented for enhancing the stability of the anode of lithium sulfur batteries, including inserting an interlayer, modifying the separator and electrolytes, employing artificial protection layers, and alternative anodes to replace the Li metal anode.
文章主页链接请参见:http://onlinelibrary.wiley.com/doi/10.1002/adma.201700542/full。