学校首页
当前位置: 首页 >> 学生工作 >> 研究生会 >> 研究生学术活动 >> 正文

名师大讲堂(一一二)预告

2018/01/12 15:38:25人浏览

报告题目:Contact Line Dynamics and Evaporation of a Sessile Droplet on Chemically Patterned Surfaces (静止液滴在具有化学图案表面上的接触线性动力学规律与蒸发过程)
报 告 人:邱惠和 教授(香港科技大学 机械及航空航天工程学系)
主 持 人:王长宏 教授
报告时间:2018年1月18日(星期四)下午14:30
报告地点:创客沙龙会议室

个人简介:Professor Huihe Qiu is currently Professor and Associate Head in the Department of Mechanical and Aerospace Engineering at The Hong Kong University of Science & Technology. Professor Qiu received his Ph.D. degree from Institute of Fluid Mechanics, LSTM, at the University of Erlangen, Germany in 1994. Professor Qiu’s research areas are in, multiphase flow and heat transfer, fluid dynamics, optical diagnostics, nano- and microfluids and flapping wing aerodynamics. Professor Qiu is Editor-in-Chief/Editor/Associate Editor of four international journals and a member of the editorial board for more than 10 international journals, such as the members of Editorial Advisory Board of Experiments in Fluids. He has been invited to give 21 plenary and keynote speeches in International Conferences. He is the recipient of the Best Paper Award of Institute of Physics (IOP) in 1994, Philips Outstanding Paper Award in the International Conference on Electronic Packaging Technology and High Density Packaging (2012), ASME Best Poster Award (2010), Best Paper Award, 2nd World Congress on Mechanical, Chemical, Material Engineering (2016), Best Paper Award, 4th International Conference on Heat Transfer and Fluid Flow (2017), The State Scientific and Technological Progress Award (SSTPA) and the Scientific and Technological Achievement Award from the State Education Commission.

报告内容:In this talk, the questions of the effects of chemically patterned surfaces on the evaporation of single/multi-component sessile droplets are addressed. We first report the evaporation dynamics of droplets on hydrophobic-network surfaces and found out that the processes can be divided into different stages: constant contact line (CCL), constant contact angle (CCA), pattern-pinning (PP) and moving contact line (MCL) stages. We developed analytical models for accurately predicting the transition of evaporation stage (critical receding contact angle). It is shown that when the contact line is pinned on a hydrophobic−hydrophilic boundary, different contact angles can be interpreted as the variation of the length of the contact line occupied by each component. Furthermore, each evaporation stage can be successfully predicted by using this newly developed models. The effective contact line length that affects the evaporation rate is analyzed taking the influence of chemically patterned surfaces into consideration. The contact line dynamics, fluid flow and species dynamics of an evaporating multicomponent droplet on chemically patterned surfaces are reported utilizing a novel AIEgen-based direct visualization, high speed visualization, micro resolution PIV and ray tracing techniques. Utilizing the experimental and analytical results, the mechanisms behind contact line pinning/depinning and the critical receding contact angles under different species concentrations on chemically patterned surfaces are discussed in details on the microscale.